Optimized Parallel Breadth-First Search
With Adaptive Strategies

Chaoqun Li Runbang Hu Xiaojiang Du Yuede |i

UNIVERSITY OF UNIVERSITY OF | UNIVERSITY OF
TEXAS TEXAS STEVENS TEXAS

ARLINGTON ARLINGTON |\srirute o TecHNoLoGY ARLINGTON

IIIIIIIIIIII

NNNNNNNNN

What is BFS

* Breadth-First Search (BFS) is a fundamental graph traversal algorithm using a level-by-level
pattern.

* Time complexity: O(|V| + |E|)

Level O

:> Level |

Level 2

Level 3

Importance of BFS

 BFS can be used in...

Network Broadcasting
Social Networks Web Crawling

Algorithm

Top-Down BFS

Bottom-Up BFS

Hybrid BFS

BFS Algorithm

Description

multiple threads process nodes in parallel.
all frontier nodes are explored at the same time

unvisited nodes actively check if any of their neighbors belong to
the previous level

dynamically switches between top-down and bottom-up strategies
depending on the size of the frontier

Top-down BFS

Bottom-up BFS

Challenge #1:Graph Diversity

* Dense graph: High average degree * Sparse graph: Few edges compared to the
number of nodes

4

* Power-law graph: High-degree nodes * High-degree skewed graph: Extreme degree
dominate imbalance
4 10
2

Challenge #1: Graph Diversity

* Some graphs have multiple properties in different parts

{ingle strategy fits all

\

Challenge #2: Redundant Computation

For vertices with a degree of | or 0, they should not be visited or searched because
they do not contribute to the connectivity of the graph.

8

@\99

If source isn’t included

Technique #1: Graph-Type Aware

* Classification of graphs using a 4-bit mask:

* Grant graph properties based on their differences

Graph-properties (binary) | Cache-friendly Sharp graph Considered dense | High degree graph
1000 Yes No Yes No
0100 No Yes No No
0010 No No Yes No
0001 No No No Yes

Cache-friendly: 8*N+4*M < 32KB

Sharp: Max_degree> 128

Dense: Average degree >= 8

High degree: max_degree / average degree >= |6

Technique #1: Graph-Type Aware

Graph Definitions Values Example
Power-law graph High-degree nodes dominate 0bOl I | Web_Graph_|
High-degree skewed graph Extreme degree imbalance ObOI0] KNN_Graph_|
Dense graph High average degree 0b00| | Synth_Dense_|
Cache-fitting graph Fits in LI cache 0bl0I0 Rand Ik 5k

Technique #1: Graph-Type Aware

* Power-law graph & High-degree skewed graph

Dynamic Switching

Top-down BFS

Bottom-up BFS

while (!queue.empty()) {
if (scout_count > top threshold && is dense){

// Switch to bottom-up
QueueToBitmap(queue, front);
queue.slide window();

inte4_t awake count = 0, old_awake count;
do {

old awake count = awake_ count;

front.swap(next);

awake_count = BUStep(front, next, distances);

Power-law graph
Early-in late out

* while (awake_count >= old_awake count || awake_count > bott1m_threshold H

BitmapToQueue(front, queue);
scout_count = 1;

} else {
// Top-down step
//edges to check -= scout count;
scout_count = TDStep(queue, distances);
queue.slide window();

Frontier/unvisited nodes >Threshold

L High-degree skewed graph
Early-in early out

10

Technique #1: Graph-Type Aware

* Dense graph * Cache-fitting graph

for (vidType v = 0; v < N; ++v) {
if (distances[v] == std::numeric_limits<weight type>::max()) {
. bool is early termination = false;

Dynamic Switching Dynamic Switching e Konmpleniml i i P
eidType start = rowptr[v];
eidType end = rowptr[v + 1];
TOP'down BFS TOP-dOWﬂ BFS for (eidType edge idx = start; edge idx < end; ++edge idx) {
vidType neighbor = col[edge idx];
if(distances[neighbor] == level) {

distances[v] = level + 1;

Bottom-up BFS Two-level Bottom-up BFS i iR . R

is_changed before = true;

}
is_early termination = true;
break;
} else if(distances[neighbor] == level + 1) {
TOP-dOW” [] Bottom-up Top_down has_cur_neighbor = true;

}

"I Two-level Bottom-up !

if(!is_early termination && has_cur_neighbor) {
digtanceg[v] = level+2; .
is_changed before = true;

11

Technique #2: Graph Pruning

* These vertices form connected components of size-| (isolated vertices) or
size-2 (vertices connected by a single edge).

* Prunes size-| and size-2 connected components (CCs)

@ Graph Pruned Nodes Original Nodes
@ Collaboration_Network 98 1,058,365
% Road Network | 64,214 21,872,120
Road Network 2 322,266 86,081,964
Size-1 CC:8,9 Social Network_| 2,316 21,872,120

Size-2 CC: 6,7

12

Other Optimizations

* Sliding queue and bitmap

* Using more efficient data structures to enhance parallelization and implemented a bitmap to
reduce computational workload.

* Benefit: Significant overall speedup, particularly in large, dense graphs.

A. Azad et al, "Evaluation of Graph Analytics Frameworks Using the GAP Benchmark Suite," 2020 IEEE International Symposium on Workload Characterization (IISWC),
Beijing, China, 2020, pp. 216-227, doi: 10.1109/1ISWC50251.2020.00029. 13

Experimental Setup

* Implementation
* 550+ lines of code in C++

* Include graph preprocessing

* Environments

* CPU cores: 24 cores for parallel

execution

* Memory: 96 GB of RAM

Graph (Abbr.)

Road Net 2
KNN_Graph_|
Road Net |
Synth_Dense_ |
Synth_Sparse_|
Web_ Graph_|
Social Net |
Collab_Net_|
Road 2k 10k
Road 1k _5k
Rand 10k 50k

|Vertex|

86.08M
24.63M
21.87M
9.90M
9.90M
6.56M
4.8M
|.06M
2K

IK

0K

|Edge]

216M
|54M
58M
980M
39M
294M
84M

| 10M
19.94K
9.94K
100K

Avg. degree

98
44

|7
|04

14

Performance Comparison

* Overall speedups:

* Speedup = Single-threaded runtime / Our

adaptive strategies

* average speedup of 9.5%
* peak of 155% for web graphs
* Up to 1.89 Billion edges per second

180 -

160

140

120 -

100

80

60 -

40 -

1654

124
108.8

65.3

19.8
10.7

' 81 96
18 2 2 mm B B
R10k R1K R2K SS1 KG1 RN1 RN2 SN1 SD1 CN1 WG1

®Optimizated BFS Speed Up

15

Thank You!

* Email:
* cx16029@mavs.uta.edu
* rxh084 | @mavs.uta.edu

* xdul 6@stevens.edu

* yuede.ji@uta.edu

* Webpage:

* https://keparal.cn

* https://www.stevens.edu/profile/xdul é

* bttps://yuede.github.io/

16

