
Optimized Parallel Breadth-First Search
With Adaptive Strategies

1

Chaoqun Li Runbang Hu Xiaojiang Du Yuede Ji

What is BFS

2

• Breadth-First Search (BFS) is a fundamental graph traversal algorithm using a level-by-level
pattern.

• Time complexity: O(|V| + |E|)

1

2

3

4

5

6

7

1

2 3

4 5 6

7

Level 0

Level 1

Level 2

Level 3

Importance of BFS

3

Web Crawling

• BFS can be used in…

Social Networks
Network Broadcasting

BFS Algorithm

4

Algorithm Description Flow

Top-Down BFS multiple threads process nodes in parallel.
all frontier nodes are explored at the same time

Bottom-Up BFS
unvisited nodes actively check if any of their neighbors belong to
the previous level

Hybrid BFS
dynamically switches between top-down and bottom-up strategies
depending on the size of the frontier

 Top-down BFS

 Bottom-up BFS

1 2 3

42 3 5

43 5

1

2

3

4

5

1

2

3

4

5

1

23

45

Challenge #1:Graph Diversity

5

• Dense graph: High average degree

• Power-law graph: High-degree nodes
dominate

1

3

45

6

2

1

2 3

45
6

7

• Sparse graph: Few edges compared to the
number of nodes

• High-degree skewed graph: Extreme degree
imbalance

1

2

3

4

5
7

6
8

9

10

1

2

3

4

5
7

6
8

9

10

Challenge #1: Graph Diversity

6

• Some graphs have multiple properties in different parts

1

14

1312

11

15

1

2

3

4

5

7

6
8

9

10
No single strategy fits all

Challenge #2: Redundant Computation

7

For vertices with a degree of 1 or 0, they should not be visited or searched because
they do not contribute to the connectivity of the graph.

1

2

3

4

5
6

7

8

9 1

2

3

4

5

If source isn’t included

Technique #1: Graph-Type Aware

8

• Classification of graphs using a 4-bit mask:

• Grant graph properties based on their differences

Graph-properties (binary) Cache-friendly Sharp graph Considered dense High degree graph
1000 Yes No Yes No
0100 No Yes No No
0010 No No Yes No
0001 No No No Yes

Cache-friendly: 8*N+4*M < 32KB
Sharp: Max_degree> 128
Dense: Average_degree >= 8
High degree: max_degree / average_degree >= 16

Technique #1: Graph-Type Aware

9

Graph Definitions Values Example

Power-law graph High-degree nodes dominate 0b0111 Web_Graph_1

High-degree skewed graph Extreme degree imbalance 0b0101 KNN_Graph_1

Dense graph High average degree 0b0011 Synth_Dense_1

Cache-fitting graph Fits in L1 cache 0b1010 Rand_1k_5k

Technique #1: Graph-Type Aware

10

• Power-law graph & High-degree skewed graph

 Top-down BFS

 Bottom-up BFS

Dynamic Switching

 Frontier/unvisited nodes >Threshold

Power-law graph
Early-in late out

High-degree skewed graph
Early-in early out

Technique #1: Graph-Type Aware

11

• Dense graph

 Top-down BFS

 Bottom-up BFS

Dynamic Switching

• Cache-fitting graph

 Top-down BFS

Dynamic Switching

 Two-level Bottom-up BFS

Top-down 🡪 Bottom-up Top-down
🡪Two-level Bottom-up

Technique #2: Graph Pruning

12

• These vertices form connected components of size-1 (isolated vertices) or
size-2 (vertices connected by a single edge).

• Prunes size-1 and size-2 connected components (CCs)

1
2

3

4
5

6
7

8
9

Size-1 CC: 8, 9
Size-2 CC: 6, 7

Graph Pruned Nodes Original Nodes

Collaboration_Network 98 1,058,365

Road_Network_1 64,214 21,872,120

Road_Network_2 322,266 86,081,964

Social_Network_1 2,316 21,872,120

Other Optimizations
• Sliding queue and bitmap
• Using more efficient data structures to enhance parallelization and implemented a bitmap to

reduce computational workload.

• Benefit: Significant overall speedup, particularly in large, dense graphs.

13
A. Azad et al., "Evaluation of Graph Analytics Frameworks Using the GAP Benchmark Suite," 2020 IEEE International Symposium on Workload Characterization (IISWC),
Beijing, China, 2020, pp. 216-227, doi: 10.1109/IISWC50251.2020.00029.

Experimental Setup
• Implementation

• 550+ lines of code in C++

• Include graph preprocessing

• Environments

• CPU cores: 24 cores for parallel
execution

• Memory: 96 GB of RAM

Graph (Abbr.) |Vertex| |Edge| Avg. degree

Road_Net_2 86.08M 216M 2

KNN_Graph_1 24.63M 154M 6

Road_Net_1 21.87M 58M 2

Synth_Dense_1 9.90M 980M 98

Synth_Sparse_1 9.90M 39M 3

Web_Graph_1 6.56M 294M 44

Social_Net_1 4.8M 84M 17

Collab_Net_1 1.06M 110M 104

Road_2k_10k 2K 19.94K 9

Road_1k_5k 1K 9.94K 9

Rand_10k_50k 10K 100K 9

14

Performance Comparison

15

• Overall speedups:

• Speedup = Single-threaded runtime / Our
adaptive strategies

• average speedup of 9.5×

• peak of 155× for web graphs

• Up to 1.89 Billion edges per second

Thank You!
• Email:
• cxl6029@mavs.uta.edu

• rxh0841@mavs.uta.edu

• xdu16@stevens.edu

• yuede.ji@uta.edu

• Webpage:
• https://keparal.cn

• https://www.stevens.edu/profile/xdu16

• https://yuede.github.io/

16

