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What is BFS 
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• Breadth-First Search (BFS) is a fundamental graph traversal algorithm using a level-by-level 
pattern. 

• Time complexity: O(|V| + |E|)
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Importance of BFS
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Web Crawling

• BFS can be used in…

Social Networks
Network Broadcasting



 

BFS Algorithm
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Algorithm Description Flow

Top-Down BFS multiple threads process nodes in parallel. 
all frontier nodes are explored at the same time

Bottom-Up BFS
unvisited nodes actively check if any of their neighbors belong to 
the previous level

Hybrid BFS
dynamically switches between top-down and bottom-up strategies 
depending on the size of the frontier

 Top-down BFS

 Bottom-up BFS
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Challenge #1:Graph Diversity
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• Dense graph: High average degree

• Power-law graph: High-degree nodes 
dominate
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• Sparse graph: Few edges compared to the 
number of nodes

• High-degree skewed graph: Extreme degree 
imbalance
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Challenge #1: Graph Diversity
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• Some graphs have multiple properties in different parts
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Challenge #2: Redundant Computation
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For vertices with a degree of 1 or 0, they should not be visited or searched because 
they do not contribute to the connectivity of the graph. 
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Technique #1: Graph-Type Aware
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• Classification of graphs using a 4-bit mask:

• Grant graph properties based on their differences

Graph-properties (binary) Cache-friendly Sharp graph Considered dense High degree graph
1000 Yes No Yes No
0100 No Yes No No
0010 No No Yes No
0001 No No No Yes

Cache-friendly:  8*N+4*M < 32KB
Sharp:  Max_degree> 128
Dense:  Average_degree >= 8
High degree: max_degree / average_degree >= 16



Technique #1: Graph-Type Aware
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Graph Definitions Values Example

Power-law graph High-degree nodes dominate 0b0111 Web_Graph_1

High-degree skewed graph Extreme degree imbalance 0b0101 KNN_Graph_1

Dense graph High average degree 0b0011 Synth_Dense_1

Cache-fitting graph Fits in L1 cache 0b1010 Rand_1k_5k



Technique #1: Graph-Type Aware
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• Power-law graph & High-degree skewed graph

 Top-down BFS

 Bottom-up BFS

Dynamic Switching

 Frontier/unvisited nodes >Threshold

Power-law graph
Early-in late out

High-degree skewed graph
Early-in early out 



Technique #1: Graph-Type Aware
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• Dense graph

 Top-down BFS

 Bottom-up BFS

Dynamic Switching

• Cache-fitting graph

  Top-down BFS

Dynamic Switching

 Two-level Bottom-up BFS

Top-down 🡪 Bottom-up Top-down
🡪Two-level Bottom-up



Technique #2: Graph Pruning 
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• These vertices form connected components of size-1 (isolated vertices) or 
size-2 (vertices connected by a single edge).

• Prunes size-1 and size-2 connected components (CCs)
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Size-1 CC: 8, 9
Size-2 CC: 6, 7

Graph Pruned Nodes Original Nodes

Collaboration_Network 98 1,058,365

Road_Network_1 64,214 21,872,120

Road_Network_2 322,266 86,081,964

Social_Network_1 2,316 21,872,120



Other Optimizations
• Sliding queue and bitmap
• Using more efficient data structures to enhance parallelization and implemented a bitmap to 

reduce computational workload.

• Benefit: Significant overall speedup, particularly in large, dense graphs.
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Experimental Setup
• Implementation

• 550+ lines of code in C++

• Include graph preprocessing

• Environments

• CPU cores: 24 cores for parallel 
execution

• Memory: 96 GB of RAM

Graph (Abbr.) |Vertex| |Edge| Avg. degree

Road_Net_2 86.08M 216M 2

KNN_Graph_1 24.63M 154M 6

Road_Net_1 21.87M 58M 2

Synth_Dense_1 9.90M 980M 98

Synth_Sparse_1 9.90M 39M 3

Web_Graph_1 6.56M 294M 44

Social_Net_1 4.8M 84M 17

Collab_Net_1 1.06M 110M 104

Road_2k_10k 2K 19.94K 9

Road_1k_5k 1K 9.94K 9

Rand_10k_50k 10K 100K 9
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Performance Comparison
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• Overall speedups: 

• Speedup =  Single-threaded runtime / Our 
adaptive strategies

• average speedup of 9.5×

• peak of 155× for web graphs

• Up to 1.89 Billion edges per second



Thank You!
• Email:
• cxl6029@mavs.uta.edu

• rxh0841@mavs.uta.edu

• xdu16@stevens.edu

• yuede.ji@uta.edu

• Webpage: 
• https://keparal.cn

• https://www.stevens.edu/profile/xdu16

• https://yuede.github.io/
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