
Optimized Parallel Breadth-First Search with Adaptive
Strategies

Chaoqun Li
University of Texas at Arlington

Runbang Hu
University of Texas at Arlington

Xiaojiang Du
Stevens Institute of Technology

Yuede Ji
University of Texas at Arlington

Abstract
Breadth-First Search (BFS) is a fundamental graph traversal
algorithm in a level-by-level pattern. It has been widely used
in real-world applications, such as social network analysis,
scientific computing, and web crawling. However, achieving
high performance for BFS on large-scale graphs remains a
challenging task due to irregular memory access patterns,
diverse graph structures, and the necessity for efficient paral-
lelization. This paper addresses these challenges by design-
ing a highly optimized parallel BFS implementation based
on the top-down and bottom-up traversal strategies. It fur-
ther integrates several key innovations, including graph type-
aware computation strategy selection, graph pruning, two-
level bottom-up, and efficient parallel implementation. We
evaluate our method on 11 diverse graphs in terms of size,
diameter, and density. On a CPU server with 48 threads, our
method achieves an average speedup of 9.5× over the serial
BFS implementation. Also, on a synthetic dense graph, our
method processes 9.3 billion edges per second, showing its
efficiency in dense graph traversal.
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1 Introduction
Breadth-First Search (BFS) is a fundamental graph traver-
sal algorithm in a level-by-level pattern [26]. As it can be
easily parallelized, it has been widely used in real world ap-
plications, such as social network analysis [29], scientific
computing [32], web crawling [25], and cybersecurity appli-
cations [5, 9, 13, 14, 17–19, 21]. However, achieving high
performance for BFS on large-scale graphs remains a chal-
lenging task due to irregular memory access patterns, diverse
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graph structures, and the necessity for efficient paralleliza-
tion [24].

This paper addresses these challenges by presenting a
highly optimized parallel BFS implementation that dynami-
cally adapts to graph characteristics while leveraging modern
parallel processing techniques. Our method is based on the
top-down and bottom-up traversal strategies [7], and further
integrates several key innovations.

(i) Graph type-aware computation strategy selection. To
enhance efficiency, we introduce a lightweight graph initial-
ization technique that assigns a 4-bit identifier to each graph,
enabling rapid classification and adaptive strategy selection.
This preprocessing step significantly reduces overhead by
tailoring traversal methods to specific graph structures.

(ii) Graph pruning. We observe a special type of vertices
along with their edges that can be quickly pruned without
affecting the correctness of BFS traversal, which are the size-1
and size-2 connected components (CCs) [16, 20].

(iii) Two-level bottom-up optimization. For graphs that fit
within cache, we employ a two-level bottom-up traversal
strategy [12] that accelerates computation. This approach
optimally balances coarse- and fine-grained parallelism, sub-
stantially improving performance for small graphs.

(iv) Efficient parallel implementation. We leverage both
OpenMP [4] and OpenCilk [28] to achieve scalable parallel
execution. Our implementation incorporates atomic opera-
tions and efficient memory management to handle concurrent
updates to the frontier and distance arrays, ensuring robust-
ness across multi-core architectures.

We evaluate our method on 11 graphs, including 6 real-
world graphs and 5 synthetic graphs. These graphs are diverse
in terms of size, diameter, and density, providing a compre-
hensive testbed for assessing scalability and performance. On
a CPU server with 48 threads, our method achieves an av-
erage speedup of 9.5× over the serial BFS implementation.
Notably, our approach demonstrates significant performance
gains, achieving up to 155× speedup for a dense and large
graph. Also, on a synthetic dense graph, our method processes
9.3 billion edges per second, showing its efficiency in dense
graph traversal.
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2 Background
Graph representation. A graph is defined as 𝐺 (𝑉 , 𝐸), where
𝑉 denotes the set of vertices (nodes), and 𝐸 denotes the set
of edges. Each edge (𝑢, 𝑣) ∈ 𝐸 connects vertices 𝑢 and 𝑣 .
We use 𝑁,𝑀 to denote the number of vertices and edges in
the graph, respectively. We store the graph in compressed
sparse row (CSR) format [6], which is widely used in graph
analytics [11, 20, 22, 23, 27, 30]. The CSR includes two
arrays: the adjacent edges with the length of 𝑀 and the begin
positions for each vertex at the adjacent edge array with the
length of 𝑁 + 1. This format offers efficient storage and fast
access to adjacency information, making it particularly well-
suited for graph traversal algorithms.

Breadth-First Search (BFS) is a fundamental graph tra-
versal algorithm that explores all the neighbors of a vertex
before moving to the next level of neighbors, i.e., level-by-
level traversal [26]. It operates in O(𝑁 +𝑀) time complexity,
making it efficient for large graphs.

Direction-Optimizing BFS is an efficient parallel BFS al-
gorithm, which switches between the conventional top-down
BFS and a newly introduced bottom-up BFS [3]. Top-down
BFS produces a tree in a top-down manner, i.e., traversing
the graph from the root by increasing the depth one level at
a time. A data structure called frontier queue (FQ) contains
the vertices that are visited in the preceding level. For each
frontier, top-down BFS expands its out-neighbors, inspects
their statuses, and subsequently marks the unvisited neighbors
as the new frontiers.

Bottom-up BFS reverses the expand direction, i.e., from
unvisited to visited. For each unvisited vertex, bottom-up
BFS expands its in-neighbors, inspects their statuses, and
if any in-neighbor has been visited in the preceding level,
it will mark the unvisited vertex as visited. The inspection
can be terminated as soon as the first visited in-neighbor is
found, which is called early termination. Benefited from the
reverse direction and early termination, bottom-up BFS is
more efficient during the middle traversal levels.

3 Methodology
In this section, we outline the methodologies used to pro-
cess and traverse graphs efficiently. The approach is divided
into four main steps: preprocessing the graph, performing
a two-level bottom-up traversal for small graphs, switching
between top-down and bottom-up traversal using atomic op-
erations and efficient memory storage, and applying different
parallelization strategies based on the graph type.

3.1 Graph Type-Aware Computation Strategy Selection
We identify four types of graphs (marked by a 4-bit mask),
including the power-law graph, density graph, high-degree
skewed graph, and cache fitting graph. Knowing their types
will enable fast decision-making during the later stages of the
BFS traversal.

(i) Power-law graph (0b0001) is a type of graph in which
the degree distribution follows a power-law function, meaning
that a small number of vertices have very high degrees, while
most vertices have relatively few connections. To quantify
this, we use the ratio of the maximum vertex degree over
the average degree, 𝑚𝑎𝑥/𝑎𝑣𝑒𝑟𝑎𝑔𝑒 > 𝛼 (e.g., 𝛼 = 16). These
graphs often benefit from the direction-optimizing BFS.

(ii) High-degree skewed graph (0b0010) refers to a spe-
cial power-law graph that includes some hub vertices with
extremely high degrees, such as, greater than a threshold 𝛽

(e.g., 𝛽 = 256). This imbalance in degree distribution often re-
sults in workload imbalance in parallel BFS, requiring special
computation strategies.

(iii) Dense graph (0b0100) refers to a graph that has a high
average degree, such as 𝐷𝑎𝑣𝑔 > 𝛾 (e.g., 𝛾 = 10). This indicates
that most vertices have a relatively large number of neigh-
bors. For such graphs, direction-optimizing BFS, especially
bottom-up traversal, can significantly improve performance
by reducing unnecessary edge traversals.

(iv) Cache-fitting graph (0b1000) refers to a small graph,
whose CSR representation can be entirely placed within the
L1 cache. When this condition holds, we observe that the
cache locality can benefit the most for performance, allowing
compact data structures and sequential memory access. For
example, if one uses the unsigned integer data type for begin
position and adjacent list arrays, and the L1 cache size is 32
KB, this condition can be expressed as 4𝑁 + 4𝑀 < 32 ∗ 1024.

In summary, by classifying graphs into these types, we can
optimize graph traversal strategies accordingly. For example,
the power-law graphs may require adaptive workload parti-
tioning, while dense graphs benefit from bottom-up traver-
sal to minimize redundant vertex explorations. High-degree
skewed graphs require specialized load-balancing techniques
to mitigate the impact of high-degree vertices. Lastly, for
small graphs, we can tradeoff parallelism for better cache lo-
cality. Note that, a graph can combine multiple types, where
we will also combine different computation strategies.

3.2 Graph Pruning and Reordering
Graph pruning. We observe a special type of vertices that
can be quickly pruned without affecting the correctness of
BFS traversal, which are the size-1 and size-2 connected
components (CCs) [16, 20]. The size-1 CC is a standalone
vertex without any neighbors, which can be quickly pruned
by checking its degree. The size-2 CC only has two vertices
with one edge. We can also quickly find them by checking
whether the neighbor of a degree-1 vertex also has 1 degree.

This pruning strategy is particularly effective for sparse
and power-law graphs, where redundant traversal of vertices
and edges are significant, especially in bottom-up BFS. By
reducing the overall graph size, we reduce the workload,
memory access overhead, and also improve cache locality.
Note that, even if a pruned vertex is identified as the source
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Figure 1. Performance comparison between OpenCilk and
OpenMP for small graphs.

vertex, we can immediately complete without going through
the typical BFS computation.

Graph reordering. We also explored graph reordering as
a preprocessing technique. The goal of graph reordering is to
enhance cache locality by ensuring that frequently accessed
vertices are placed close together in memory, reducing ran-
dom memory accesses and improving traversal performance.
However, the computation of graph reordering itself might be
costly, e.g., sometimes more than the BFS traversal. Due to
that, we only explore a lightweight degree-based reordering
technique. That is, we reorder the vertices in descending or-
der of degree, placing high-degree vertices first to improve
memory access patterns.

While graph reordering led to performance gains for cer-
tain graph datasets, our evaluation revealed that the total
benchmark scores were lower compared to our optimized
implementation without reordering. This is likely due to addi-
tional overhead introduced by the reordering process, which
offsets the benefits in some graphs. As the benefits are not
generic, we decided to not use graph reordering.

3.3 Two-Level Bottom-Up BFS
The two-level bottom-up BFS extends the traditional bottom-
up approach by exploring not only the current but also the
next level in each iteration [12]. This strategy introduces an
early termination flag to eliminate redundant computations
and accelerate convergence. The idea is, if a vertex has a
neighbor at the current level, its distance is updated imme-
diately. Otherwise, if a neighbor is found at the next level,
it will be assigned a distance two levels ahead, reducing the
workload in next iteration.

The correctness of this two-level bottom-up BFS has been
proved by a prior work, i.e., XBFS [12]. This work also
demonstrated that it can significantly improve the perfor-
mance over the conventional bottom-up BFS, particularly in
graphs that allow aggressive level propagation. By reducing
traversal overhead, this approach enhances efficiency and
speeds up BFS computation.

Table 1. Graph benchmarks (sorted by vertex count).

Graph Avg. D Max D |𝑉 | |𝐸 |
Road_Net_2 2 26 86.08M 216M
kNN_Graph_1 6 766 24.63M 154M
Road_Net_1 2 21 21.87M 58M
Synth_Dense_1 98 155 9.90M 980M
Synth_Sparse_1 3 4 9.90M 39M
Web_Graph_1 44 234,198 6.56M 294M
Social_Net_1 17 20,134 4.80M 84M
Collab_Net_1 104 11,358 1.06M 110M
Rand_2k_10k 9 22 2K 19.94K
Rand_1k_5k 9 22 1K 9.94K
Rand_10k_50k 9 23 10K 100K

3.4 Parallel Programming Library
To optimize BFS performance across different types of graphs,
we utilize OpenMP [4] and OpenCilk [28] based on the
graph’s characteristics. We also adjust the threshold values
and switching timing to further enhance performance.

From our observation, OpenMP is ideal for sparse graphs,
providing efficient coarse-grained parallelism with minimal
synchronization. It is well-suited for structured parallelization,
where tasks can be distributed in larger chunks. OpenCilk, on
the other hand, excels with fine-grained task parallelism and
dynamic load balancing, making it particularly effective for
dense graphs with high-degree vertices. Our BFS implemen-
tation switches between OpenMP and OpenCilk and adapts
between top-down and bottom-up traversal based on graph
density and the workload.

In particular, for large or sparse graphs, OpenMP is used
with an initial top-down step. We then switch to bottom-up
when the level exceeds the top threshold and return to top-
down once the level drops below the bottom threshold. These
adaptive thresholds ensure that we adjust the switching point
dynamically to achieve the best performance based on the
graph’s size and structure.

For small graphs, we employ OpenCilk and transition
from top-down to bottom-up when the active frontier sur-
passes a top threshold. Figure 1 compares the performance
between OpenCilk and OpenMP for small graphs. If the fron-
tier shrinks below a bottom threshold, we switch back to
top-down for efficiency. We fine-tune the threshold values
and switch conditions based on the graph’s structure to maxi-
mize performance.

4 Experiment
4.1 Graph Benchmarks
Table 1 summarizes the details of the tested graph datasets,
including both real-world and synthetic graphs. The datasets
vary in terms of size, diameter, degree distribution, and spar-
sity, providing comprehensive evaluations for the algorithm’s
scalability and efficiency.
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Table 2. Runtime performance (in ms).

Graph Baseline Ours Speedup B edges/s

Road_Net_2 14,670 740 19.82 0.29
kNN_Graph_1 2,100 220 9.55 0.69
Road_Net_1 3,310 310 10.68 0.19
Synth_Dense_1 11,870 110 108.82 9.30
Synth_Sparse_1 1,620 200 8.10 0.20
Web_Graph_1 2,860 18.40 155.43 15.99
Social_Net_1 1,060 16.23 65.31 5.17
Collab_Net_1 0.47 3.79 123.96 29.13
Rand_2k_10k 0.05 0.02 2.50 1.11
Rand_1k_5k 0.02 0.01 2.00 1.84
Rand_10k_50k 0.35 0.20 1.75 0.50

4.2 Runtime Performance
We test the methods on a CPU server with 48 threads and 96
GB memory on the Speedcode platform [31]. Table 2 shows
the runtime performance. The speedup is calculated by the
runtime of baseline (serial top-down BFS) over ours.

We can see that our optimized BFS algorithm demonstrates
significant speedup over the baseline method across vari-
ous graph benchmarks. On average, our method achieves
an 9.5× speedup across all graphs. The highest speedup is
observed in Web_Graph_1, reaching 155.43×, while the low-
est improvement is in small random graphs, such as ran-
dom_10k_50k, with only 1.75× speedup. Dense graphs, in-
cluding Synth_Dense_1 and Collab_Net_1, benefit the most
due to high connectivity, allowing better workload paralleliza-
tion. Meanwhile, road networks (e.g., Road_Network_1 and
Road_Network_2) show moderate acceleration, due to their
sparse and structured nature limiting parallelism.

4.3 Performance Study of Direction Switching
By applying graph type-aware computation, two-level bottom-
up BFS, and direction-optimizing BFS, along with customized
strategies designed for different graph structures, we achieved
a remarkable performance boost. Our optimizations led to a
substantial increase in average processing speed, especially
for dense graphs, reaching an impressive 137.25× improve-
ment over the baseline.

Additionally, we study the impact of switching strategies
on denser and more uniform graphs, as shown in Figure 2. For
these graphs, we optimize the switching threshold between
top-down and bottom-up approaches based on the current
workload, enabling earlier switching to bottom-up traversal
and earlier switching back to top-down, thereby enhancing
performance.

This helps to improve the performance by at least 3× com-
pared to the parallel direction-optimizing BFS implemen-
tation. By fine-tuning the switching threshold between the
top-down and bottom-up phases, we identify a value that can
greatly enhance the final performance.

Collab_Net_1 Social_Net_1 Synth_Dense_1 Web_Graph_1
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Figure 2. Performance of direction-optimizing switch on
dense graphs.

5 Related Work
Parallel BFS has been widely studied, with optimizations
focusing on workload balancing, memory efficiency, and tra-
versal strategies. Traditional top-down and bottom-up ap-
proaches have been enhanced through direction-optimizing
switch mechanisms [8], which dynamically alternate between
strategies based on frontier size. However, determining opti-
mal switching points remains a challenge due to graph struc-
ture variability and runtime unpredictability.

Graph preprocessing techniques [10] such as reordering [1]
and pruning [2] improve cache locality and reduce the search
space, leading to potential performance gains. Reordering
strategies aim to enhance data locality by restructuring adja-
cency lists, while pruning techniques [15] eliminate unnec-
essary computations by removing redundant or low-impact
edges. However, these preprocessing steps introduce addi-
tional overhead that may offset benefits, particularly for dy-
namic or frequently updated graphs [33].

6 Conclusion
This paper designs a highly optimized parallel BFS imple-
mentation based on the top-down and bottom-up traversal
strategies. It further integrates several key innovations, includ-
ing graph type-aware computation strategy selection, graph
pruning, two-level bottom-up, and efficient parallel imple-
mentation. We evaluate our method on 11 diverse graphs in
terms of size, diameter, and density. On a CPU server with 48
threads, our method achieves an average speedup of 9.5× over
the serial BFS implementation. Also, on a synthetic dense
graph, our method processes 9.3 billion edges per second,
showing its efficiency.
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